Section 1 – COMPANY AND MATERIAL IDENTIFICATION

PRODUCT TYPE: Bare aluminum alloy for brazing (B).

TRADE NAME: ROYAL 90 & ROYAL 100

SPECIFICATION: N/A

CLASSIFICATION: N/A

VENDOR: Crown Alloys Company
ADDRESS: 30105 Stephenson Hwy.
Madison Heights, MI. 48071

TELEPHONE: (248) 588-3790

WEBSITE: www.crownalloys.com

DATE: March 23, 2004

Section 2 - HAZARDOUS INGREDIENTS

IMPORTANT! This section covers the material from which these products are manufactured. The fumes and gases produced when welding with normal use of these products are covered in Sections 5 and 6.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS No.</th>
<th>OSHA – TWA PEL, mg/m³</th>
<th>(ACGIH – TWA)¹ TLV, mg/m³</th>
<th>LD₅₀</th>
<th>Wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>7429-90-5</td>
<td>15 (total dust) 5 (respirable)</td>
<td>15 (total dust) 5 (fume)</td>
<td>Not Available</td>
<td>85-99.5</td>
</tr>
<tr>
<td>Beryllium</td>
<td>7440-41-7</td>
<td>0.002, 0.005 (ceiling) 0.025 (30 min peak/8hr shift)</td>
<td>0.002</td>
<td>Not Available</td>
<td>0.0008 max</td>
</tr>
<tr>
<td>Copper</td>
<td>7440-50-8</td>
<td>0.1 (fume) 1.0 (dust/mist)</td>
<td>0.2 (fume) 1.0 (dust/mist)</td>
<td>35 mg/kg, mouse intraperitoneal</td>
<td>0.05-6.8</td>
</tr>
<tr>
<td>Iron</td>
<td>7439-89-6</td>
<td>10 as Fe (oxide dust & fume)</td>
<td>5 as Fe (oxide dust & fume)</td>
<td>Not Available</td>
<td>0.95 max</td>
</tr>
<tr>
<td>Magnesium</td>
<td>7439-95-4</td>
<td>15 total particulate (oxide fume)</td>
<td>10 (oxide fume)</td>
<td>Not Available</td>
<td>5.6 max</td>
</tr>
<tr>
<td>Manganese</td>
<td>7439-96-5</td>
<td>0.1 as dust (ceiling)</td>
<td>0.2 (dust fume)</td>
<td>9,000 mg/kg, rat, oral</td>
<td>1.0 max</td>
</tr>
<tr>
<td>Silicon</td>
<td>7440-21-3</td>
<td>15 (total dust) 5 (respirable)</td>
<td>10 (total dust)</td>
<td>3160 mg/kg, rat, oral</td>
<td>0.20-13.0</td>
</tr>
<tr>
<td>Titanium</td>
<td>7440-32-6</td>
<td>15 as oxide dust (total particulate)</td>
<td>10 as oxide dust</td>
<td>Not Available</td>
<td>0.05-0.20</td>
</tr>
<tr>
<td>Zinc</td>
<td>7440-66-6</td>
<td>5 (oxide fume) 15 (total oxide dust) 5 (respirable oxide dust)</td>
<td>5, 10 (STEL) as oxide fume 10 (total oxide dust)</td>
<td>Not Available</td>
<td>0.25 max</td>
</tr>
</tbody>
</table>

¹The ACGIH has an established exposure limit for Welding Fumes, Not Otherwise Classified. That Threshold Limit Value is 5 mg/m³. NIOSH classifies welding fumes as carcinogens.
CROWN ALLOYS
COMPANY

Section 3 - PHYSICAL and CHEMICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Silver-Gray Solid Wire</td>
</tr>
<tr>
<td>Freeze-Melt Point</td>
<td>970°F-1215°F (521°C-657°C)</td>
</tr>
<tr>
<td>Vapor Pressure (mm)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Vapor Density (air=1)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>2.5 – 2.9</td>
</tr>
<tr>
<td>pH</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Odor</td>
<td>None</td>
</tr>
<tr>
<td>Density</td>
<td>Approximately .1lb/in</td>
</tr>
<tr>
<td>Boiling Point</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility In Water</td>
<td>None</td>
</tr>
</tbody>
</table>

Section 4 - FIRE and EXPLOSION HAZARD DATA

-FLAMMABLE PROPERTIES: Non-flammable as shipped. Small chips and dust from processing may ignite readily. Welding arc and sparks can ignite combustibles and flammables. Refer to American National Standard Z49.1 for fire prevention during the use of welding and allied procedures.

-FIRE/EXPLOSION: May be a potential hazard under the following conditions:

- Dusts or fines dispersed in the air can be explosive.
- Chips, fines and dust in contact with water can generate flammable/explosive hydrogen gas. These gases could present an explosion hazard in confined or poorly ventilated spaces.
- Fines and dust in contact with certain metal oxides (e.g. rust). A thermite reaction, with considerable heat generation, can be initiated by a weak ignition source.
- Molten aluminum in contact with water/moisture can be explosive. Contact of molten aluminum with other metal oxides can initiate a thermite reaction.

-EXTINGUISHING MEDIA: Use fire fighting methods and materials that are appropriate for surrounding fire. Use coarse water spray on chips or turnings. For fines, dust or molten aluminum, use Class D extinguishing agents. DO NOT use halogenated extinguishing agents on small chips/fines. Do not use water in fighting fires around molten aluminum. Fire fighters should wear NIOSH approved, positive pressure, self-contained breathing apparatus and full protective clothing when appropriate.

Section 5 – STABILITY AND REACTIVITY DATA

Hazardous Decomposition Products

Aluminum is stable under normal conditions of use, storage, and transportation as shipped. Chips, fines, dust and molten aluminum are considerably more reactive (See Section 4).

Welding/Brazing fumes and gases can not be classified simply. The composition and quantity of both are dependent upon the metal being welded, coatings on the metal being welded (such as paint, plating, or galvanizing), the number of welders, the volume of the work area, the quality and the amount of ventilation, the position of the welder's head with respect to the gas plume, the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities), the process and procedures, as well as the welding consumables.

When the wire is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 2. Decomposition products of normal operation include those originating from the volatilization, reaction, or oxidation of the materials shown in Section 2, plus those from the base metal, coatings, etc., as noted above.

Reasonably expected decomposition products from normal use of these products include a complex of the oxides of the materials listed in Section 2, as well as carbon monoxide, carbon dioxide, ozone (TLV 0.1 ppm ceiling and PEL 0.1 ppm), nitric oxide (TLV 25 ppm and PEL 25 ppm) and nitrogen dioxide (TLV 3.5 ppm STEL and PEL 5 ppm ceiling). The fume limit for manganese may be reached before the general limit for welding fumes (5 mg/m³) is reached.

One recommended way to determine the composition and quantity of fumes and gases to which workers are exposed is to take an air sample inside the welder's helmet if worn or in the worker's breathing zone. See ANSI/AWS F1.1 "Method for Sampling Airborne Particles Generated by Welding and Allied Processes" and "Characterization of Arc Welding Fume" available from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.
Section 6 - HEALTH HAZARD DATA

- **Medical conditions aggravated by exposure to this product:** Chronic lung disease, skin rashes, and asthma.
- **EYES:** Explosion/fire hazards may be present (See Section 4). Welding/Brazing fumes can cause irritation. Ultraviolet radiation from welding can cause flash burns.
- **SKIN:** Explosion/fire hazards may be present (See Section 4). Aluminum can cause irritation. Ultraviolet radiation and infrared heat rays from flames and hot metal can burn skin.
- **INHALATION:** Welding/Brazing fumes can be a cancer hazard, cause respiratory tract irritation, cause metal fume fever, and other health effects listed below:
 - Welding processes generate fumes and an intense ultraviolet radiation that results in the formation of ozone and oxides of nitrogen. Exposure to low levels of ozone can cause irritation of the eyes, nose and throat. Inhalation can cause chest tightness, headache, shortness of breath, cough, wheeze and narrowing of airways. Symptoms disappear when removed from exposure.
 - Exposure to high levels of ozone may cause acute respiratory distress with shortness of breath, pulmonary changes, hemorrhage and pulmonary edema (fluid in lungs). Symptoms of pulmonary edema may be delayed for one or more hours. Exposure of test animals and human tissue to high concentrations has shown chromosomal changes, reproductive effects, blood changes, and death from lung congestion.
 - Oxides of nitrogen can cause irritation of the eyes, skin (when moist), and respiratory tract. Exposure to high levels of nitrogen oxides can cause delayed pulmonary edema (fluid in the lungs) which may be fatal. Nitric oxide can cause formation of methemoglobin, which decreases the blood’s ability to carry oxygen. Chronic overexposure can cause pulmonary fibrosis (scarring of the lungs).
 - Aluminum dust/fines and fumes are a low risk by inhalation. For standard operations (milling, cutting, grinding), aluminum dust should be treated as a nuisance dust as defined by the ACGIH.
 - Overexposure to magnesium oxide fumes can cause respiratory tract irritation and fever, chills, shortness of breath and malaise (metal fume fever). Temporary symptoms can include fever, chills, nausea, vomiting, and muscular pain. Chronic exposure to high levels of manganese dust or fumes can cause nervous system disorders, pneumonitis (inflammation of lung tissue), and may cause fibrosis (scarring of lung tissue) and reproductive disorders in males.
 - Chronic exposure to inert dusts of silicon can cause increased airway resistance and contributes to chronic bronchitis. Intratracheal administration of silicon in rabbits produced significant pulmonary lesions.
 - Exposure to zinc oxide fumes subsequent to burning, welding, and molten metal work can result in fever, chills, shortness of breath, malaise (metal fume fever), and upper respiratory tract irritation. Temporary symptoms can include fever, chills, nausea, vomiting and muscular pain. Exposure to dust or fines presents a low health risk by inhalation.
 - Overexposure to copper fume may exist when welding, flame cutting, etc. Overexposure to copper dust/mists can cause irritation of the eyes, skin, and upper respiratory tract. Chronic overexposure may result in blood disorders (anemia), and skin and hair discoloration. Overexposure to copper fume can result in respiratory tract irritation, nausea, fever, chills, shortness of breath and malaise (metal fume fever).
 - Beryllium can cause irritant dermatitis, allergic contact dermatitis, and skin granulomas. Inhalation of excessive levels of beryllium can result in acute pneumonitis (inflammation of the lung tissues). Beryllium can cause lung sensitization in susceptible individuals. Chronic inhalation of dust and fumes by these sensitized individuals can result in a serious, progressive disease called Chronic Beryllium Disease (CBD) which can, over time, be fatal. Inhalation of beryllium has produced lung tumors in animals. Beryllium is listed on the NTP and is known to be carcinogenic to humans by IARC (Group 1)*.

- **IARC CLASSIFICATIONS:**
 - Group 1: The agent is carcinogenic to humans. There is sufficient evidence that a causal relationship existed between exposure to the agent and human cancer.

*IARC CLASSIFICATIONS: Group 1: The agent is carcinogenic to humans. There is sufficient evidence that a causal relationship existed between exposure to the agent and human cancer.
Section 7 - PRECAUTIONS FOR SAFE HANDLING & USE/APPLICABLE

CONTROL MEASURES

Read and understand the manufacturer's instructions and the precautionary label on the product. See American National Standard Z49.1, Safety in Welding, Cutting, and Allied Processes, published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126 and OSHA Publication 2206 (29CFR1910), US Government Printing Office, Washington, D.C. 20402 for more details on many of the following. Aluminum should be kept dry. Avoid generating dust (See Section 4). Avoid contact with sharp edges or heated metal. Hot and cold aluminum are not visually different.

VENTILATION: Use enough ventilation, exhaust at the (flame) arc, or both, to keep the fumes and gases below TLV's in the worker's breathing zone and general area. Train the welder to keep his head out of the fume plume.

RESPIRATORY PROTECTION: Use respirable fume respirator or air supplied respirator when welding/brazing in confined space or where local exhaust or ventilation does not keep exposure below TLV. Workers in the immediate vicinity of the welding operations shall be protected as necessary by local exhaust ventilation or airline respirators.

EYE PROTECTION: Wear helmet or use face shield with correct shade of filter lens. As a rule of thumb, start with a shade that is too dark to see the weld/braze zone. Then go to the next lighter shade which gives sufficient view of the weld/braze zone. Provide protective screens and flash goggles, to shield others.

PROTECTIVE CLOTHING: Wear head, hand, and body protection which help to prevent injury from radiation, sparks, and electrical shock. See ANSI Z49.1. As a minimum this includes welder's gloves, protective face shield, dark substantial clothing, and may include arm protectors, aprons, hats, and shoulder protection. Train the welder not to touch live electrical parts and to insulate him or herself from work and ground.

WASTE DISPOSAL METHOD: Prevent waste from contaminating surrounding environment. Discard any product, residue, disposable container or liner in an environmentally acceptable manner, in full compliance with federal, state and local regulations.

Section 8 – FIRST AID MEASURES

- **EYES**: Flush eyes with plenty of water or saline for at least 15 minutes. Consult a physician.
- **SKIN**: Wash thoroughly with soap and water. Consult a physician if irritation persists.
- **INHALATION**: Remove to fresh air. Check for clear airway, breathing, and presence of pulse. Provide CPR for persons without pulse or respirations. Consult a physician immediately.

Section 9 – DEFINITIONS

<table>
<thead>
<tr>
<th>CAS No.</th>
<th>Chemical Abstracts Service Number</th>
<th>PEL</th>
<th>Permissible Exposure Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
<td>STEL</td>
<td>Short Term Exposure Limit</td>
</tr>
<tr>
<td>LD₅₀</td>
<td>Lethal Dose (50 percent kill)</td>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
</tbody>
</table>

Section 10 - SARA TITLE III SECTION 313 SUPPLIER NOTIFICATION

Welding and brazing rod contains chemicals subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

- **STATE REGULATIONS**: PENNSYLVANIA “Special Hazardous Substance”: Beryllium.

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES: The information in this document is believed to be correct as of the date issued. However, this information is provided without any representation or warranty, expressed or implied, regarding accuracy or correctness. The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons we do not assume responsibility and expressly disclaim liability of loss, damage, or expense arising from it or any way connected with the handling, storage, use, or disposal of this product.