CROWN ALLOYS COMPANY

MATERIAL SAFETY DATA SHEET

Section 1 - COMPANY AND MATERIAL IDENTIFICATION

PRODUCT TYPE: Nickel alloy bare wire for gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW).

TRADE NAME: ROYAL 11-10, ROYAL 11-30, ROYAL 82-10, ROYAL 82-30, ROYAL 625-10, ROYAL 625-30, ROYAL C276-10, ROYAL C276-30

SPECIFICATION: AWS A5.14

CLASSIFICATION: ER Ni-1, ER NiCr-3, ER NiCrMo-3, ER NiCrMo-4

TRADE NAME: ROYAL 44-30

SPECIFICATION: AWS A5.15

CLASSIFICATION: ER NiFeMn-CI

VENDOR: Crown Alloys Company

ADDRESS: 30105 Stephenson Hwy., Madison Heights, MI 48071

TELEPHONE: (248) 588-3790

WEBSITE: www.crownalloys.com

DATE: January 18, 2011

Section 2 - HAZARDOUS INGREDIENTS

HMIS RATING (Hazardous Materials Information System)

<table>
<thead>
<tr>
<th>Health (blue) - 0</th>
<th>Flammability (red) - 0</th>
<th>Reactivity (yellow) - 0</th>
<th>Protective Equipment - X</th>
</tr>
</thead>
</table>

Health Hazard: 0 (minimal acute or chronic exposure hazard); 1 (slight acute or chronic exposure hazard); 2 (moderate acute or significant chronic exposure hazard); 3 (severe acute exposure hazard; one time overexposure can result in permanent injury and may be fatal); 4 (extreme acute exposure hazard; one time overexposure can be fatal).

Flammability Hazard: 0 (minimal hazard); 1 (materials that require substantial pre-heating before burning); 2 (combustible liquid or solids; liquids with a flash point of 38-93°C [100-200°F]); 3 (Class IB and IC flammable liquids with flash points below 38°C [100°F]); 4 (Class IA flammable liquids with flash points below 23°C [73°F] and boiling points below 38°C [100°F]).

Reactivity Hazard: 0 (normally stable); 1 (material that can become unstable at elevated temperatures or which can react slightly with water); 2 (materials that are unstable but do not detonate or which can react violently with water); 3 (materials that can detonate when initiated or which can react explosively with water); 4 (materials that can detonate at normal temperatures or pressures).

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks. Although HMIS® ratings are not required on MSDS's under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used only in conjunction with a fully implemented HMIS® program by workers who have received appropriate HMIS® training. HMIS® is a registered trade and service mark of the NPCA.
Section 2 - HAZARDOUS INGREDIENTS (continued)

IMPORTANT! This section covers the material from which these products are manufactured. The fumes and gases produced when welding with normal use of these products are covered in Sections 5 & 6.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>CAS No.</th>
<th>OSHA – TWA PEL, mg/m³</th>
<th>(ACGIH – TWA)⁹ TLV, mg/m³</th>
<th>IDLH mg/m³*</th>
<th>Wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>Al 7429-90-5</td>
<td>15.0 (total metal dust)</td>
<td>10.0 (metal dust)</td>
<td>N/E 1.50 max</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 (metal dust – respirable fraction)</td>
<td>5.0 (welding fumes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>C 7440-44-0</td>
<td>3.5 (as carbon black)</td>
<td>3.5 (as carbon black)</td>
<td>N/E 0.50 max</td>
<td>0.50</td>
</tr>
<tr>
<td>Chromium</td>
<td>Cr 7440-47-3</td>
<td>0.005 (5 micrograms) [Cr(VI) inorganic compounds as Cr(VI), water soluble]</td>
<td>5.0 (metal)</td>
<td>250 0.50 max⁷</td>
<td>14.0 – 25.0²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 ceiling limit (as CrO₃)</td>
<td>0.05 [Cr(VI) inorganic compounds as Cr, water soluble]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.01 [Cr(VI) inorganic compounds as Cr, water insoluble]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt</td>
<td>Co 7440-48-4</td>
<td>0.05 (as Co metal)</td>
<td>0.02 (dust and fume as Co)</td>
<td>N/E 2.50 max</td>
<td>2.50</td>
</tr>
<tr>
<td>Columbium (Niobium)</td>
<td>Nb 7440-03-1</td>
<td>no limits set</td>
<td>no limits set</td>
<td>N/E 4.15 max</td>
<td>4.15</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu 7440-50-8</td>
<td>0.1 (fume as Cu)</td>
<td>0.2 (fume)</td>
<td>N/E 2.50 max</td>
<td>2.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 (dusts and mists, as Cu)</td>
<td>1.0 (dusts and mists, as Cu)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Fe 7439-89-6</td>
<td>10.0 (Fe₂O₃ dust & fume as Fe)</td>
<td>5.0 (Fe₂O₃ dust & fume as Fe)</td>
<td>2500 0.10 – 49.0</td>
<td>100 – 490²</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn 7439-96-5</td>
<td>5.0 (ceiling, as Mn compounds)</td>
<td>0.2 (elemental and inorganic compounds, as Mn)</td>
<td>500 0.50 – 4.00⁶</td>
<td>9.50 – 15.0⁸</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 (fume, as Mn)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Mo 7439-98-7</td>
<td>5.0 (soluble)</td>
<td>5.0 (soluble)</td>
<td>5000 7.00 – 18.0⁶</td>
<td>35.0 – 75.0⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.0 (insoluble compounds, total dust as Mo)</td>
<td>10.0 (insoluble & metal compounds, as Mo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>Ni 7440-02-0</td>
<td>1.0 (metal and insoluble compounds as Ni)</td>
<td>1.5 as metal (inhalable fraction)</td>
<td>10 35.0 – 75.0⁶</td>
<td>93.0 min.⁷</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 (as Ni soluble)</td>
<td>0.1 (as Ni soluble)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon</td>
<td>Si 7440-21-3</td>
<td>10.0 (total dust)</td>
<td>10.0</td>
<td>N/E 1.0 max.</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0 (respirable fraction)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tantalum</td>
<td>Ta 7440-25-7</td>
<td>5.0 (metal and oxide dusts)</td>
<td>5.0 (metal and oxide dusts)</td>
<td>N/E 0.50 max</td>
<td>0.50</td>
</tr>
<tr>
<td>Titanium</td>
<td>Ti 7440-32-6</td>
<td>no limit set</td>
<td>no limit set</td>
<td>N/E 3.50 max</td>
<td>3.50</td>
</tr>
<tr>
<td>Tungsten</td>
<td>W 7440-33-7</td>
<td>5.0 (insoluble compounds, as W)</td>
<td>5.0 (insoluble compounds, as W)</td>
<td>N/E 4.50 max⁶</td>
<td>4.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STEL 10.0 (for soluble compounds, as W)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>V 7440-62-2</td>
<td>0.5 (ceiling) as V₂O₅ (respirable dust)</td>
<td>0.05 as V₂O₅ (respirable fume)</td>
<td>N/E 0.35 max</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 (ceiling) as V₂O₅ (respirable fume)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Immediately Dangerous to Life and Health – This level represents a concentration from which one can escape within 30 minutes without suffering escape-preventing or permanent injury.
1 Royal 11-10, 11-30 and 44-30
2 Royal 82-10, 82-30, 625-10, 625-30, C276-10 and C276-30
3 Royal 11-10, 11-30, 82-10, 82-30, 625-10, 625-30, C276-10 and C276-30
4 Royal 44-30
5 Royal 625-10, 625-30, C276-10 and C276-30 only
6 Royal 82-10, 82-30, 625-10, 625-30, C276-10, C276-30 and 44-30
7 Royal 11-10 and Royal 11-30
8 Royal C276-10 and Royal C276-30 only
9 The ACGIH has an established exposure limit for Welding Fumes, Not Otherwise Classified. That Threshold Limit Value is 5 mg/m³.

NIOSH classifies welding fumes as carcinogens.

N/E – Not Established
SECTION 3 - PHYSICAL AND CHEMICAL CHARACTERISTICS

Appearance: Solid rods or wire which have a silver-metallic luster.
Physical State: Solid
Melting Point: >1,400°C
Specific Gravity: 8.0 – 9.0 gm/cc
Odor: None

SECTION 4 - FIRE AND EXPLOSION HAZARD DATA

NATIONAL FIRE PROTECTION ASSOCIATION:

Health Hazard: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials);
1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure cause serious temporary or residual injury); 4 (materials that under very short exposure causes death or major residual injury).

Flammability Hazard: Refer to definitions for "HMIS RATING (Hazardous Materials Information System)"
Reactivity Hazard: Refer to definitions for "HMIS RATING (Hazardous Materials Information System)"

FLAMMABILITY PROPERTIES: Non-flammable as shipped. Brazing flame, welding arc and sparks can ignite combustibles and flammables.

FLAMMABLE LIMITS (in air by volume, %): Lower (LEL): Not Applicable Upper (UEL): Not Applicable

FLASH POINT: Not Flammable
AUTOIGNITION TEMPERATURE: Not Flammable

Other: Any “ABC” Class

UNUSUAL FIRE AND EXPLOSION HAZARDS: When involved in a fire, this product may generate irritating fumes containing iron compounds, metal oxides and a variety of metal compounds. The molten material can present a significant thermal hazard to firefighters.

SECTION 5 - STABILITY AND REACTIVITY DATA

Hazardous Decomposition Product

These nickel alloys are stable under normal conditions of use, storage, and transportation as shipped.

Welding fumes and gases can not be classified simply. The composition and quantity of both are dependent upon the metal being welded, coatings on the metal being welded (such as paint, plating, or galvanizing), the number of welders, the volume of the work area, the quality and the amount of ventilation, the position of the welder's head with respect to the gas plume, the presence of contaminants in the atmosphere (such as chlorinated hydrocarbon vapors from cleaning and degreasing activities), the process and procedures, as well as the welding consumables.

When the electrode/wire is consumed, the fume and gas decomposition products generated are different in percent and form from the ingredients listed in Section 2. Decomposition products of normal operation include those originating from the volatilization, reaction, or oxidation of the materials shown in Section 2, plus those from the base metal, coatings, etc., as noted above.
Reasonably expected decomposition products from normal use of these products include a complex of the oxides of the materials listed in Section 2, as well as carbon monoxide, carbon dioxide, ozone (TLV 0.1 ppm ceiling and PEL 0.1 ppm), nitric oxide (TLV 25 ppm and PEL 25 ppm) and nitrogen dioxide (TLV 3, 5 ppm STEL and PEL 5 ppm ceiling). The fume limit for chromium, manganese and/or nickel may be reached before the general limit for welding fumes (5 mg/m³) is reached.

A SIGNIFICANT AMOUNT OF THE CHROMIUM IN THE FUMES CAN BE HEXAVALENT CHROMIUM, ALSO KNOWN AS Cr(VI), WHICH HAS A VERY LOW EXPOSURE LIMIT OF 0.005 mg/m³ (5 µg/m³).

EU RoHS (European Union Restriction of Hazardous Substances): These nickel and nickel-chrome welding alloys contain Chromium. During welding these alloys will produce Cr(VI) (hexavalent chromium), however, the weld deposit does not contain Cr(III) as it will all be in the zero valent state or as Cr(III) as an oxide. FINISHED PRODUCTS MANUFACTURED USING THESE NICKEL AND NICKEL-CHROME WELDING ALLOYS WILL NOT CONTAIN ANY Cr(VI).

The fume limit for manganese, nickel and/or chromium may be reached before the general limit for welding fumes (TLV 5 mg/m³) is reached. One recommended way to determine the composition and quantity of fumes and gases to which workers are exposed is to take an air sample inside the welder's helmet if worn or in the worker's breathing zone. See ANSI/AWS F1.1 "Method for Sampling Airborne Particles Generated by Welding and Allied Processes" and "Characterization of Arc Welding Fume" available from the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126.

Medical conditions aggravated by exposure to this product: Skin, respiratory, pancreas and liver disorders may be aggravated by prolonged overexposures to the dusts or fumes generated by these products.

- **EYES:** Contact with the rod form of these products can be physically damaging to the eye (i.e., foreign object). Fumes generated during welding operations can be irritating to the eyes. Chronic exposures could cause conjunctivitis. Ultraviolet radiation from welding can cause flash burns. Contact with the molten metal will burn the contaminated eyes.
 - Due to the presence of nickel, prolonged exposure could cause conjunctivitis (inflammation of the mucous membranes of the eyes).
 - Copper metal as a foreign body can provoke an inflammatory reaction resulting in pus formation in the conjunctiva, cornea or sclera.
 - Prolonged eye contact with iron metal dust could cause rust brown colored spots and if left for several years, permanent damage could result.

- **SKIN:** Contact of the rod form of these products with the skin is not anticipated to be irritating. Fumes generated during welding operations can be irritating to the skin. Symptoms of skin overexposure may include irritation and redness. Prolonged or repeated skin overexposure may lead to allergic contact dermatitis. Contact with molten metal will burn contaminated skin. Ultraviolet radiation and infrared heat rays can burn skin. Skin absorption is not known to be a significant route of overexposure for any component of these products.

- **INGESTION:**
 - Repeated or prolonged ingestion exposures to > 50-100 mg of iron per day can result in deposition of iron in the body tissues, which can cause disease.
 - High dietary intake of molybdenum may produce a gout-like disease and high blood uric acid.

- **INHALATION:** Excessive inhalation of user generated fumes from high temperature cutting or welding of these alloys may, depending on the specific features of the process used, pose a long term health hazard. The IARC has concluded that welding fumes are possibly carcinogenic to humans. Inhalation of large amounts of particulates generated by this product during metal processing operations may result in pneumoconiosis (a disease of the lungs). Repeated overexposures to the dusts or fumes generated by these alloys during welding operations may have adverse effects on the lungs with possible pulmonary edema and emphysema. Some of the other health effects are listed below:
 - Aluminum dust/fines and fumes are a low risk by inhalation. For standard operations (milling, cutting, grinding), aluminum dust should be treated as a nuisance dust as defined by the ACGIH.
 - Chronic exposure to excessive levels of carbon may lead to benign pneumoconiosis.
 - Hexavalent chromium (Chrome VI) can cause asthma, kidney damage, primary irritant dermatitis, sensitization dermatitis, skin ulceration, and pulmonary edema (fluid in the lungs). Chronic inhalation or overexposure has been associated with lung, nasal, gastrointestinal cancer. Hexavalent chromium is listed as carcinogenic to humans by IARC (Group 1)*. Chromium and some of its compounds are listed as carcinogenic by the NTP. Hexavalent chromium compounds may be generated during welding operations with alloys containing chromium. Fumes from welding chromium-containing stainless steel or certain chromium-containing rods can trigger eczematous eruptions on the palms of the hands of chromium-sensitized individuals.
 - Asthmatic symptoms and pulmonary fibrosis occurring in the tungsten carbide industry may be related to the inhalation of metallic cobalt dust. Evidence of polycythemia and altered thyroid, kidney and liver function have also been found.
 - Columbium also known as niobium could cause irritation to the respiratory tract upon acute exposure.
 - Overexposure to copper fume may exist when welding, flame cutting, etc. Overexposure to copper dust/mists can cause irritation of the eyes, skin, and upper respiratory tract. Chronic overexposure may result in blood disorders (anemia), and skin and hair discoloration. Overexposure to copper fume can result in respiratory tract irritation, nausea, fever, chills, shortness of breath and malaise (metal fume fever).
Section 6 - HEALTH HAZARD DATA (continued)

INHALATION (continued)
- Inhalation of dusts and fumes of iron can cause metal fume fever. Symptoms of metal fume fever can be delayed 24-48 hours. Inhalation of excessive iron oxide fumes or dusts can lead to irritation of the respiratory tract. Prolonged inhalation of iron oxide for periods of 6 to 10 years is known to cause siderosis which appears to be a benign pneumoconiosis.
- Chronic exposure to high levels of manganese dust or fumes can cause nervous system disorders, pneumonitis (inflammation of lung tissue), and may cause fibrosis and reproductive disorders in males. It can also lead to neurological problems such as apathy, drowsiness, weakness, spastic gait, paralysis and other neurological problems resembling Parkinsonism. Excessive inhalation of fumes may cause “Metal Fume Fever” with its flu like symptoms, such as chills, fever, body aches, vomiting, sweating, etc. Chronic overexposure to manganese compounds may affect the central nervous system. Symptoms include languor, sleepiness, muscular weakness, emotional disturbances and spastic gait.
- Inhalation of molybdenum fumes has caused kidney damage, respiratory irritation and liver damage in animals.
- The U.S. National Toxicology Program (NTP) 10th Report on Carcinogens has listed “metallic nickel” as “reasonably anticipated to be a human carcinogen” and “nickel compounds” as “known human carcinogens”. “Nickel Alloys” were reviewed but not listed. The International Agency for Research on Cancer (IARC) concluded that nickel compounds were carcinogenic to humans and that metallic nickel is carcinogenic to humans. Epidemiological studies of workers exposed to nickel powder and to dust and fume generated in the production of nickel alloys and of stainless steel have not indicated the presence of a significant respiratory cancer hazard. Nickel can cause pulmonary asthma in hyperventilating individuals. Chronic overexposure to nickel fumes may also cause pulmonary fibrosis and edema.
- Oxides of nitrogen can cause irritation of the eyes, skin (when moist), and respiratory tract. Exposure to high levels of nitrogen oxides can cause delayed pulmonary edema (fluid in the lungs) which may be fatal. Nitric oxide can cause formation of methemoglobin, which decreases the blood’s ability to carry oxygen. Chronic overexposure can cause pulmonary fibrosis (scarring of the lungs).
- Welding processes generate fumes and an intense ultraviolet radiation that results in the formation of ozone and oxides of nitrogen. Exposure to low levels of ozone can cause irritation of the eyes, nose and throat. Inhalation can cause chest tightness, headache, shortness of breath, cough, wheezing and narrowing of Airways. Symptoms disappear when removed from exposure.
- Exposure to high levels of ozone may cause acute respiratory distress with shortness of breath, pulmonary changes, hemorrage and pulmonary edema. Symptoms of pulmonary edema may be delayed for one or more hours. Exposure of test animals and human tissue to high concentrations has shown chromosomal changes, reproductive effects, blood changes, and death from lung congestion.
- High concentrations of silicon dust will cause some irritation to the nose and throat. Inhalation of crystalline silica over a long period can cause silicosis. Crystalline silica is listed as carcinogenic to humans by IARC (Group 1)*.
- Inhalation of titanium could cause mild irritation to the respiratory tract. Inhalation of titanium dioxide dust or fume could produce lung fibrosis and chronic bronchitis.
- Tungsten fume may aggravate an existing chronic respiratory disease.

* IARC CLASSIFICATION: Group 1: The agent is carcinogenic to humans. There is sufficient evidence that a causal relationship existed between exposure to the agent and human cancer.

Section 7 - PRECAUTIONS FOR SAFE HANDLING & USE/APPLICABLE

CONTROL MEASURES

VENTILATION AND ENGINEERING CONTROLS: Maintain exposures below the acceptable exposure levels (see Section 2). Use industrial hygiene air monitoring to ensure that your use of these products does not create exposures that exceed the recommended exposure limits. Always use exhaust ventilation in user operations such as high temperature cutting, grinding, welding and brazing. Train the welder to keep his head out of the fume plume. Confined spaces require adequate ventilation and/or air supplied respirators. Read and understand the manufacturer's instructions and the precautionary label on the product. See American National Standard Z49.1, Safety in Welding, Cutting, and Allied Processes, published by the American Welding Society, 550 N.W. LeJeune Road, Miami, FL 33126 and OSHA Publication 2206 (29CFR1910), US Government Printing Office, Washington, D.C. 20402 for more details on many of the following.

RESPIRATORY PROTECTION: Use respirable fume respirator or air supplied respirator when welding in confined space or where local exhaust or ventilation does not keep exposure below TLV’s (see Section 2). Use only NIOSH approved respirators in accordance with 29 CFR 1910.134 – Respiratory Protection. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure-demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998).

FOR MAXIMUM SAFETY:

BE CERTIFIED FOR AND WEAR A RESPIRATOR AT ALL TIMES WHEN WELDING OR BRAZING!

EYE PROTECTION: Ensure eyewash/safety shower stations are available near areas where these products are used. Wear safety glasses, goggles or face-shield with filter lens of appropriate shade number (per ANSI Z49.1-1988, “Safety in Welding and Cutting”).

PROTECTIVE CLOTHING: Wear head, hand, and body protection which help to prevent injury from radiation, sparks, and electrical shock. See ANSI Z49.1. As a minimum this includes welder's gloves, protective face shield, dark substantial clothing, and may include arm protectors, aprons, hats, and shoulder protection.

WORK PRACTICES AND HYGIENE PRACTICES: As with all chemicals, avoid getting these products ON YOU or IN YOU. Wash hands after handling these products. Do not eat or drink while handling these products.

WASTE DISPOSAL METHOD: Prevent waste from contaminating surrounding environment. Discard any product, residue, disposable container or liner in an environmentally acceptable manner, in full compliance with federal, state and local regulations. However, alloy wastes are normally collected to recover metal values.
CROWN ALLOYS
COMPANY

Section 8 - FIRST AID MEASURES

- **EYE EXPOSURE**: Flush eyes with plenty of water or saline for at least 15 minutes. Consult a physician.
- **SKIN EXPOSURE**: Wash thoroughly with soap and water. If molten material contaminates the skin, immediately begin decontamination with cold, running water. **Minimum flushing is for 15 minutes**. Consult a physician if irritation persists.
- **INHALATION EXPOSURE**: Remove to fresh air. Check for clear airway, breathing and presence of pulse. Provide CPR for persons without pulse or respirations. Consult a physician immediately.
- **INGESTION EXPOSURE**: Ingestion is not a likely route of exposure for these rods. If swallowed CALL PHYSICIAN OR POISON CONTROL CENTER FOR MOST CURRENT INFORMATION. **DO NOT INDUCE VOMITING**, unless directed by medical personnel. Have victim rinse mouth with water, if conscious. Never induce vomiting or give diluents (milk or water) to someone who is unconscious, having convulsions, or unable to swallow.

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and eliminate overexposure.

Section 9 - TOXICOLOGICAL INFORMATION

Below are human toxicological data available for the components of these products present in concentration greater than 1%.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (III) Oxide</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(Chromium Compound Category)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manganese</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Copper</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nickel</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

U.S. SARA THRESHOLD PLANNING QUANTITY: There are no specific Threshold Planning Quantities for the components of these products. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lbs (4,540 kg) therefore applies, per 40 CFR 370.20.

CALIFORNIA PROPOSITION 65: WARNING: This product contains or produces a chemical known to the State of California to cause cancer and birth defects (or other reproductive harm). (California Health & Safety Code 25249.5 et seq.)

PENNSYLVANIA “Special Hazardous Substance”: Nickel; Chromium compounds, hexavalent.

Section 10 – REGULATORY INFORMATION

Individual alloys covered by this MSDS may contain the following toxic chemicals subject to the reporting requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 and of 40 CFR Part 372: Aluminum, Chromium, Cobalt, Copper, Manganese, and Nickel. Refer to Section 2 of this MSDS for the alloy name and the percent by weight and the CAS Number for each chemical.

U.S. SARA REPORTING REQUIREMENTS: The components of these products are subject to the reporting requirements of Sections 302, 304 and 313 of Title III of the Superfund Amendments and Reauthorization Act, as follows:

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>SARA 302 (40 CFR 355, Appendix A)</th>
<th>SARA 304 (40 CFR Table 302.4)</th>
<th>SARA 313 (40 CFR 372.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium (III) Oxide</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(Chromium Compound Category)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Manganese</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Copper</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Nickel</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES: The information in this document is believed to be correct as of the date issued. However, this information is provided without any representation or warranty, expressed or implied, regarding accuracy or correctness. The conditions or methods of handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons we do not assume responsibility and expressly disclaim liability of loss, damage, or expense arising from it or any way connected with the handling, storage, use, or disposal of this product. Data may be changed from time to time. Be sure to consult the latest edition of the MSDS.